

Recent Advances in Nanotechnology

Manju P. Nair

St.Paul's College, Kalamassery, India.

drmanjupnair@stpauls.ac.in

DOI: Available on author(s) request

Abstract: Nanotechnology has emerged as a transformative force across scientific and engineering disciplines. With the ability to manipulate matter at the atomic and molecular scale, recent advances in nanotechnology have enabled breakthroughs in medicine, electronics, energy, and environmental remediation. This paper reviews recent progress in nanomaterials synthesis, characterization, and applications, emphasizing innovations in nanoscale drug delivery, nanoelectronics, energy storage, and sustainable nanomaterials. The study also discusses critical challenges such as toxicity, regulatory concerns, and scalability, concluding with future prospects and interdisciplinary pathways for research and development.

Keywords: Nanotechnology, Nanomaterials, Challenges, Risks, Applications.

Introduction

Nanotechnology involves the manipulation of matter on a scale of 1 to 100 nanometers. At this scale, materials exhibit unique properties not observed at the macro level, such as quantum effects, enhanced reactivity, and increased surface area-to-volume ratios. Since the early 2000s, nanotechnology has evolved from a theoretical concept to a foundational technology with broad practical implications. This paper explores recent advances in nanotechnology and assesses its growing impact across sectors. The discussion include (1) Advances in Nanomaterials (2) Applications Across Industries (3) Challenges and Risks and (4) Future Directions

(1) Advances in Nanomaterials

Carbon-based Nanostructures

Carbon nanotubes (CNTs), fullerenes, and graphene have shown exceptional electrical, thermal, and mechanical properties. Recent studies demonstrate scalable synthesis of defect-free single-walled CNTs and graphene oxide via chemical vapor deposition (CVD) and liquid-phase exfoliation.

Metal and Metal-Oxide Nanoparticles

Gold (Au), silver (Ag), and titanium dioxide (TiO₂) nanoparticles have found applications in biomedical imaging, antimicrobial coatings, and photocatalysis. Synthesis techniques such as green chemistry and microwave-assisted methods have improved yield and biocompatibility.

Quantum Dots and Nanocrystals

Semiconductor quantum dots (QDs) are increasingly used in diagnostics, photodetectors, and quantum computing. Recent research has enabled low-toxicity QDs for in vivo applications using cadmium-free materials such as indium phosphide (InP).

(2) Applications Across Industries

Nanotechnology has revolutionized drug delivery through liposomes, dendrimers, and polymeric nanoparticles. mRNA COVID-19 vaccines used lipid nanoparticles (LNPs) to protect and deliver genetic material. Nanorobotics is being explored for targeted cancer therapy and precision surgery.

Nanoelectronics

Moore's Law is being extended with nanotransistors, spintronics, and memristors. Materials such as molybdenum disulfide (MoS_2) offer potential for sub-5 nm transistors. Flexible nanoelectronics are enabling next-generation wearable devices.

Energy and Environment

Nanomaterials enhance the efficiency of solar cells, batteries, and supercapacitors. Silicon nanowires and perovskite nanoparticles are improving photovoltaic efficiency. Nanocatalysts and filters are used in water purification and CO_2 capture.

(3) Challenges and Risks

Despite significant progress, several challenges remain:

- (a) **Toxicity and Environmental Impact:** Nanoparticles can cross biological barriers, leading to concerns about bioaccumulation and long-term toxicity.
- (b) **Standardization and Regulation:** Lack of uniform protocols hampers reproducibility and commercial deployment.
- (c) **Scalability:** Transitioning from lab-scale to industrial-scale production without compromising quality remains a barrier.

(4) Future Directions

The future of nanotechnology lies in convergence with fields such as artificial intelligence, biotechnology, and quantum computing. Promising directions include:

- (i) **Self-assembling Nanostructures** for smart materials.
- (ii) **AI-driven Nanodesign** for predictive synthesis and function optimization.
- (iii) **Nanomanufacturing Platforms** for precision engineering.

Collaborative research between academia, industry, and regulatory bodies will be essential to harness nanotechnology's full potential.

Conclusion

Nanotechnology continues to push the boundaries of innovation across domains. From healthcare to clean energy, it offers solutions to some of the world's most pressing challenges. However, ethical and environmental stewardship must guide its advancement. With responsible development, nanotechnology is poised to become a cornerstone of 21st-century science and engineering.

References

1. Bhushan, B. (Ed.). (2017). Springer Handbook of Nanotechnology. Springer.
2. Roco, M. C., & Bainbridge, W. S. (2005). Societal Implications of Nanoscience and Nanotechnology. Springer.
3. De Volder, M. F. L., et al. (2013). Carbon Nanotubes: Present and Future Commercial Applications. *Science*, 339(6119), 535–539.
4. Sun, Y., et al. (2022). Nanoparticle delivery of mRNA for COVID-19 vaccination. *Nature Reviews Drug Discovery*, 21, 309–328.

... Cite this article ...

Nair, M. P. (2025). Recent Advances in Nanotechnology. SK INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH HUB, 13(1), 1–3.

<https://skpublisher.com/docs/papers/volume13/issue1/SKV13I1-0001.pdf>