ISSN: 2394-3122 (Online) ISSN: 2394-6253 (Print) Impact Factor: 6.03

Volume 12 Issue 11, November 2025

SK International Journal of Multidisciplinary Research Hub

Journal for all Subjects e-ISJN: A4372-3088 p-ISJN: A4372-3089

Research Article / Survey Paper / Case Study
Published By: SK Publisher (www.skpublisher.com)

A Monthly Double-Blind Peer Reviewed Refereed Open Access Multidisciplinary & Multilingual International Journal - Included in the International Serial Directories

Bridging Electronics and Automation: PCB Design Strategies for Next-Generation Robotics

Sanjeev Mane

Senior Manager, Brooks Automation, Massachusetts.USA.

DOI: https://doi.org/10.61165/sk.publisher.v12i11.1

Abstract: The integration of advanced PCB design methodologies into modern robotics is accelerating the development of compact, intelligent, and energy-efficient robotic systems. However, this evolution introduces a set of interdependent engineering challenges that impact reliability, performance, and manufacturability. This work consolidates recent advancements and practical solutions across five critical domains: thermal management, signal integrity and EMI/EMC compliance, mechanical robustness under miniaturization and flexible form factors, supply-chain and sustainability constraints, and escalating design complexity driven by autonomous control and heterogeneous sensor integration.

Thermal pathways and board layout decisions significantly influence component junction temperatures and overall system lifespan, making thermal-aware placement strategies and novel cooling materials essential for high-density robotic PCBs. Mechanical failures in mobile and industrial robots often correlate with electrical disturbances originating from motors, power rails, and wireless modules—issues exacerbated by inadequate early-stage simulation, grounding schemes, and board-level shielding.

AI-assisted layout, routing, and automated quality-control frameworks enable shorter design cycles while optimizing trace and via positioning for improved signal integrity and thermal dissipation. Emerging trends such as flexible, stretchable, and additively manufactured PCBs unlock new morphologies for soft and wearable robotics, while recyclable and 3D-printed PCB processes reduce material precursors and facilitate integration into constrained assemblies. These developments point toward a hybrid design paradigm—combining physics-based simulation, machine-learning-driven optimization, and advanced materials engineering with design-for-manufacturing principles to deliver robust, high-performance robotic electronics. Finally, we propose a research roadmap emphasizing cross-disciplinary benchmarks, standardized EMC/thermal testing models for robotic platforms, and open datasets to advance reliable AI-driven PCB design technologies.

Keywords: Printed Circuit Board (PCB) Design Integration, Thermal Management, Electromagnetic Interference (EMI/EMC), Flexible and 3D-Printed PCBs, AI-Assisted PCB layout.

I. Introduction

Printed circuit boards (PCBs) form the backbone of virtually every modern robotic system—from microrobots and wearable robotic skins to industrial manipulators and autonomous vehicles. As robotics evolves from single-component systems to integrated platforms combining sensing, computation, power electronics, and wireless connectivity, PCB design has shifted

from a component-level craft to a multidisciplinary engineering challenge. Modern robotic PCBs must satisfy stringent requirements for power density, thermal dissipation, signal integrity, electromagnetic compatibility (EMC), mechanical resilience, and manufacturability—especially in irregular or dynamic form factors. PCB design directly influences overall robot performance, reliability, and cost.

Two technological trends amplify both opportunity and complexity. First, component miniaturization and edge computing—such as neural accelerators and multi-sensor fusion modules—drive higher board power density and high-frequency routing demands. These changes introduce thermal hotspots and signal-integrity challenges that consumer-grade PCB practices cannot address for mobile or industrial robots. Consequently, thermal-aware design, controlled impedance routing, and EMC-oriented stack-up strategies have become essential engineering steps rather than optional refinements.

Second, advances in materials and manufacturing—such as flexible/stretchable circuits, additive manufacturing of conductive traces, and multi-material 3D printing—enable novel mechanical integrations, including conformal electronics, embedded sensors, and monolithic PCB-structural components. These innovations unlock soft robotics, wearable systems, and space-constrained assemblies but also raise new reliability concerns, including fatigue, interconnect longevity, and failure modes, necessitating updated design-for-manufacturing and testing protocols.

Meanwhile, design automation is rapidly incorporating artificial intelligence (AI) and machine learning (ML) techniques, including reinforcement learning and generative design, to automate placement, routing, and layout validation—tasks traditionally requiring expert judgment. Early industrial implementations demonstrate reduced cycle times and error rates, suggesting workflows where AI augments engineers rather than replaces them. However, AI-driven tools introduce challenges in explainability, physical validation, and integration with existing EDA ecosystems, particularly for safety-critical robotic systems.

Despite these advances, significant research and practice gaps persist. There are no standardized benchmarks or test methods for evaluating PCB performance under robotic operating conditions—such as combined EMC/thermal testing under representative vibration and duty cycles. Toolchain interoperability across mechanical CAD, thermal/EMC simulation, and control software remains limited, leading to fragmented workflows and late-stage design rework. Furthermore, sustainability claims for new materials and processes lack comprehensive lifecycle and reliability data for robotic applications. Addressing these gaps requires collaboration across materials science, thermal/electromagnetic modeling, AI-driven design automation, and robotics-specific verification practices.

This paper aims to: (1) identify key technical challenges in integrating PCBs into advanced robotic systems; (2) review and analyze solutions such as thermal management strategies, EMC/EMI mitigation, flexible and additive manufacturing techniques, and AI-based design tools; and (3) propose a research agenda for reproducible benchmarks, cross-disciplinary toolchains, and sustainable design practices. The ultimate goal is to transition from ad hoc, experience-driven approaches to systematic, physics-informed, and data-driven engineering for PCB-enabled robotics.

II. PCB DESIGN IN MODERN ROBOTICS: AN OVERVIEW

Printed circuit boards (PCBs) serve as both the structural and electrical backbone of robotic systems, and their role is rapidly evolving. While early PCBs were characterized by rigid substrates and limited interconnect capability, modern robotic platforms demand boards that integrate high-performance computing, multi-sensor arrays, power electronics, and high-speed wireless interfaces—often within constrained, dynamic, or deformable form factors. This transformation elevates PCB design from a component-level task to a multidisciplinary system-level challenge, requiring careful optimization of electrical, thermal, mechanical, and manufacturability constraints.

Impact Factor: 6.03

ISSN: 2394-3122 (Online)

Traditional vs. modern PCB applications

Traditional PCBs were characterized by rigid substrates, simple layer stacks (single- or double-sided), and low-to-moderate component density—sufficient for consumer and industrial electronics. These designs still persist in ruggedized controllers and power distribution boards for robotics. However, modern robotic applications have redefined PCB functionality: conformal and flexible interconnects for soft robots, distributed sensing skins with embedded antennas for swarm communication, and integrated compute modules (e.g., edge AI accelerators) mounted directly on molded substrates. These advancements introduce new engineering considerations, including mechanical fatigue, flex-life, connectorless interconnect strategies, and system-level validation under dynamic motion and vibration—factors that were largely irrelevant in legacy PCB systems.

Advances in multilayer, flexible, and HDI PCBs

The compactness and routing complexity of modern robotic systems rely heavily on multilayer and high-density interconnect (HDI) technologies. HDI practices—such as microvias, via-in-pad configurations, and sequential lamination—enable significantly higher component and trace density per unit area, which is essential for integrating sensors, processors, and power stages into space-constrained robot limbs and end-effectors. Flexible and stretchable PCBs further advance this capability by supporting conformal electronics that bend or stretch alongside soft actuators and wearable robotic skins. Techniques such as dual-layer flex architectures and laser post-processing have enabled stretchable sensor arrays for compliant systems, facilitating real-time sensing and actuator monitoring. Concurrently, materials research and dielectric property optimization remain critical for additive and 3D-printed conductive traces, as these innovations promise new pathways for lightweight, customizable, and sustainable PCB manufacturing.

Role of PCBs in sensors, actuators, AI chips, and communication modules

In robotic systems, PCBs increasingly host heterogeneous subsystems that demand integrated design strategies:

- Sensors and Sensing Arrays: PCB-based platforms—including Lab-on-PCB approaches—enable cost-effective integration of optical, chemical, and tactile sensors while simplifying wiring for dense arrays used in tactile skins, environmental monitoring, and biomedical robotics.
- Actuators and Power Electronics: Power delivery and driver circuits (e.g., motor drivers, power MOSFETs, integrated gate drivers) require PCB layouts optimized for high currents, thermal hotspots, and EMI coupling between power and low-voltage domains. Multilayer planes, thermal vias, and controlled impedance become essential design features.
- Edge AI Accelerators and Custom SoMs: Increasingly deployed on robotic PCBs to reduce latency, minimize
 cabling, and enhance security through chip-level integration. These high-speed components demand controlledimpedance routing, robust PDN decoupling, and advanced signal integrity strategies to prevent performance
 degradation.
- Communication Modules: Antennas and RF front ends are now integrated onto PCBs, including conformal antennas
 on flexible substrates for multi-modal connectivity (BLE, Wi-Fi, UWB, mmWave). This trend supports swarming,
 localization, and telemetry but heightens the need for EMC-aware layout and co-design with mechanical structures.

III. KEY CHALLENGES IN PCB INTEGRATION FOR ROBOTICS

The integration of PCBs into modern robotic systems creates a tightly coupled, multi-domain engineering challenge spanning physical, electromagnetic, mechanical, and supply-chain considerations. This paper identifies five critical problem areas—derived from recent peer-reviewed literature and technical reports—and outlines mitigation strategies supported by

authoritative sources. These load-bearing claims address: (1) thermal management and heat dissipation in high-density layouts; (2) signal integrity and EMI/EMC compliance under mixed-signal conditions; (3) mechanical durability in flexible and miniaturized form factors; (4) sustainability and supply-chain constraints in advanced materials and manufacturing; and (5) escalating design complexity driven by heterogeneous sensors and autonomous control modules. Each challenge is analyzed with reference to indexed journals and conference proceedings, followed by practical solutions and emerging research directions.

3.1. Thermal management in high-density circuits

High-performance edge computing modules (e.g., AI accelerators, motor drivers) combined with densely packed power electronics have significantly increased board-level power density in robotic systems. Without robust thermal design, localized hotspots can lead to component fatigue, power throttling, and even infrared exposure risks. Early prediction during stack-up planning, PDN design, and component placement—validated through thermal finite element analysis (FEA) under representative robotic duty cycles—is critical. Proven mitigation strategies include heat-via arrays, internal copper planes, and filled or capped thermal pads, which reduce junction temperatures and thermal resistance in high-density PCBs. These measures must be incorporated early in the design cycle to avoid late-stage redesign. Furthermore, practical constraints in robotics—such as limited airflow, moving enclosures, and conformal or flexible configurations—make passive conduction paths and heat-spreading copper planes essential design elements for thermal reliability.

3.2. Signal integrity & EMI/EMC concerns

Robotic systems combine noisy power stages (e.g., motors, drives), high-speed digital buses (PCIe, SERDES, LVDS), and multiple RF links (Wi-Fi, UWB, BLE), creating complex electromagnetic interference (EMI) environments with dynamic coupling between aggressors and victims—highly dependent on PCB layout. To mitigate radiated emissions, conducted noise, and timing failures, designers must implement controlled-impedance routing, continuous reference planes, optimized return path planning, and early EMC/EMI simulation during the design phase. Literature and best-practice guidelines emphasize first-order defenses such as strategic layer-stack selection, ground/power plane partitioning, robust decoupling strategies, and board-level shielding to ensure compliance and signal integrity in mixed-signal robotic platforms.

3.3. Miniaturization vs. durability trade-offs

Miniaturization through HDI architectures, microvias, and via-in-pad technology enables high compute density and multisensor integration within robotic limbs and end-effectors, while supporting conformal designs for soft robotics and constrained
environments. However, these benefits introduce concentrated thermal loads, localized mechanical stress, and solder-joint
reliability risks. Flex PCB implementations further face bending-induced fatigue, including failure modes such as copper trace
cracking at transition zones, dielectric delamination, and interconnect fracture under cyclic strain. Reliability engineering for
dynamic robotic applications therefore emphasizes fatigue-life modeling (e.g., Coffin–Manson for flexural cycles), accelerated
stress testing protocols for thermal cycling, humidity exposure, and repetitive bending, as well as design optimizations such as
filleted pad geometries, teardrop via transitions, and strategic stiffener placement to mitigate strain gradients and enhance
survivability under complex load profiles.

IV. SOLUTIONS AND INNOVATIONS

This work synthesizes the most promising solution pathways identified in recent indexed literature and industrial case studies to bridge the gap between PCB design and advanced robotic systems. Each section systematically couples a technique with quantitative evidence drawn from peer-reviewed journals, conference proceedings, and industry reports, followed by actionable design notes tailored for practicing engineers.

Impact Factor: 6.03

ISSN: 2394-3122 (Online)

4.1 AI-driven PCB design automation

AI-driven design automation is transforming traditionally sequential, heuristic, and expert-driven tasks such as component placement, routing, via planning, and layout validation. Two complementary paradigms are emerging: (1) pattern-recognition models trained on large-scale design corpora can infer optimal placement and routing motifs to minimize trace congestion and eliminate critical loop regions; and (2) reinforcement learning and differentiable optimization frameworks enable direct multi-objective optimization for signal integrity, thermal management, and manufacturability under stringent design constraints.

Relevance to robotics: Compact robotic limbs and end-effectors impose severe spatial and thermal constraints, where human designers often struggle to balance competing objectives. AI can propose component clustering strategies, routing topologies, and via arrays that optimize copper utilization for heat spreading while minimizing return-path loop areas—critical for EMI control and reliability. Industry deployments and emerging startups demonstrate measurable reductions in design cycle time and irrational routing iterations, accelerating production workflows and improving design robustness.

4.2 Flexible and 3D-printed PCBs

Flexible printed circuit technologies—comprising polyimide substrates, ultra-thin copper laminates, and rigid-flex stack-ups—combined with additive manufacturing for electronics enable highly conformal architectures, distributed sensing skins, and embedded interconnects that significantly reduce connector count and harness weight. In soft robotics, prosthetics, and wearable systems, the design of electronic skins and sensor arrays must prioritize fatigue resistance under high-cycle bending. Well-engineered flex circuitry achieves mechanical compliance while maintaining electrical integrity across thousands of flexural cycles through optimized trace geometry, controlled neutral axis placement, and strain-relief strategies.

Advances in additive and 3D printing techniques for conductive traces and dielectric substrates are accelerating, with emerging studies demonstrating the feasibility of printing circuits directly onto curved or non-planar surfaces using conductive inks and multi-material depositions. This capability is particularly advantageous for robots with complex morphologies—such as curved shells and soft actuators—where conventional PCB fabrication is impractical. While production-grade reliability and performance remain inferior to HDI and flex PCB manufacturing, additive approaches already enable rapid prototyping and bespoke geometries, reducing lead times and enabling design iterations that would otherwise be cost-prohibitive with traditional subtractive processes.

4.3 Advanced cooling and thermal materials

High-power motor drivers and AI accelerators impose thermal management requirements that exceed the capabilities of conventional copper planes and passive conduction. Recent studies have evaluated advanced board-level and system-level solutions, including vapor chambers, graphene-enhanced heat spreaders, and high-performance thermal interface materials (TIMs), demonstrating significantly reduced thermal resistance in constrained enclosures. For example, graphene-assembled films employed as vapor chamber envelopes have shown measurable improvements over copper counterparts in laboratory conditions, making them highly attractive for weight- and volume-limited robotic platforms.

Given the limited or inconsistent airflow typical of robotic systems, thermal strategies must integrate both board-level and system-level approaches. Board-level techniques include dense thermal via arrays beneath high-power SMD components, filled vias connecting inner copper planes, and localized heat spreaders. System-level solutions encompass chassis-integrated heat sinks, vapor chambers, and directed airflow ducts. Current literature emphasizes thermal-mechanical-electrical co-design as critical for predictable performance, with documented best practices such as coupling thermal vias to structural chassis elements, deploying phase-change or micro-vapor devices at hotspots, and optimizing TIM selection for minimal interfacial resistance.

Impact Factor: 6.03

ISSN: 2394-3122 (Online)

4.4 Embedded systems and modular PCB architectures

Modular architectures—such as mezzanine boards, standardized System-on-Module (SoM) interfaces, and mechanically keyed electrical sockets—enable scalable integration and reusability across robotic platforms, reducing design risk and lifecycle cost. Embedded systems literature and robotics architecture frameworks increasingly adopt modular PCB ecosystems that partition compute, power, and I/O domains, allowing upgrades (e.g., replacing an AI accelerator) without redesigning power distribution or sensor harnesses.

For robotics applications, modular PCBs must incorporate explicit specifications for thermal management, electromagnetic compatibility (EMC), and mechanical robustness. Connector and interposer selection should account for vibration, shock, and repetitive motion environments. Standardized pinouts, power rails, and mechanical datum points simplify late-stage integration and facilitate compliance with regulatory standards in medical, aerospace, and industrial domains. This approach not only accelerates certification but also supports rapid field upgrades and platform-level scalability.

V. CASE STUDIES AND APPLICATIONS

Advanced printed circuit board (PCB) technologies have significantly influenced robotics across diverse sectors, including healthcare, transportation, and industrial automation. Case studies in surgical robotics, autonomous aerial systems, and smart manufacturing highlight the stringent technical requirements and the innovations enabled by modern PCB design. These examples underscore the critical role of advanced thermal management strategies, miniaturization, and high-density interconnect architectures in achieving system-level objectives such as reliability, precision, and scalability. By leveraging HDI structures, rigid-flex integration, and optimized thermal pathways, robotic platforms can meet demanding performance metrics while maintaining compliance with safety and regulatory standards.

5.1 PCB Use in Surgical Robots

In advanced surgical robotics systems—such as the da Vinci platform and other minimally invasive robotic instruments—printed circuit boards (PCBs) serve as critical infrastructure for real-time control, precision actuation, and haptic feedback. These systems typically employ multilayer HDI PCBs integrating high-performance processors, motion control ICs, and AI-assisted imaging modules. The compact nature of HDI technology facilitates the integration of embedded sensors within surgical instruments, enabling closed-loop feedback and high-resolution endoscopic imaging.

Flex PCBs are particularly advantageous in constrained geometries, such as slender instrument shafts, where traditional wiring is impractical. Their mechanical compliance allows for tight routing while maintaining signal integrity. However, surgical environments impose stringent reliability requirements: PCBs must withstand repeated sterilization cycles—including autoclaving, chemical cleaning, and mechanical handling—without degradation. These challenges are addressed through the use of biocompatible materials, medical-grade conformal coatings, and encapsulation techniques that ensure long-term durability, patient safety, and consistent device performance.

5.2 PCB-Driven Drones and Autonomous Vehicles

Autonomous drones and self-driving vehicles rely on PCB-based architectures to support high-speed computation, sensor fusion, and real-time communication. Flight-control boards integrate inertial measurement units (IMUs), GNSS receivers, and motor drivers using HDI and rigid-flex PCB technologies to minimize weight and optimize spatial efficiency. In aerial platforms, mass reduction is critical; therefore, lightweight flex PCBs are preferred for power distribution and sensor interconnects. For autonomous ground vehicles, PCBs host advanced driver-assistance systems (ADAS), lidar/radar modules, and V2X communication units, all of which demand robust EMI shielding and efficient thermal dissipation to maintain signal integrity under high-speed data transfer in complex electromagnetic environments. Automotive-grade PCBs employ enhanced

ISSN: 2394-3122 (Online)

Impact Factor: 6.03 ISSN: 2394-6253 (Print)

dielectric substrates, controlled impedance routing, and increased copper thickness to ensure durability and long-term reliability under harsh thermal gradients, vibration, and shock conditions.

5.3 Industrial Robotics and Smart Manufacturing

Printed circuit boards (PCBs) are fundamental to industrial robotics, enabling connectivity between sensors, actuators, and control units within robotic arms, collaborative robots (cobots), and automated production systems. Power PCBs often integrate programmable logic controllers (PLCs) to manage high-current delivery for servo motors, while control PCBs interface with industrial IoT networks through protocols such as EtherCAT and PROFINET, embedded directly into multilayer and HDI architectures for deterministic real-time communication. Flexible PCBs facilitate cable routing through articulated joints, reducing friction and mitigating wear from repetitive motion cycles.

With the growing emphasis on predictive maintenance, PCB-embedded sensors for vibration, current, and thermal monitoring provide actionable data to improve uptime and reduce operational costs. These advancements not only enhance functionality but also align with Industry 4.0 objectives of connectivity, intelligence, and sustainable manufacturing. By integrating sensing, communication, and power distribution within advanced PCB ecosystems, industrial robotics achieves higher reliability, modularity, and lifecycle efficiency.

VI. CONCLUSION

The integration of advanced printed circuit board (PCB) technologies into modern robotics represents both a technological imperative and a strategic opportunity for innovation. PCBs serve as the foundational infrastructure for robotic intelligence, sensing, power distribution, and communication across sectors such as surgical robotics, autonomous aerial systems, self-driving vehicles, and industrial automation. Lightweight, EMI-shielded constructions and high-density multilayer stack-ups enable compact, high-performance systems that meet the stringent demands of mobility, precision, and reliability.

Despite persistent structural challenges—including thermal accumulation, signal integrity degradation, mechanical durability trade-offs, and material scarcity—the field is actively evolving. Innovations such as advanced thermal interface materials, AI-assisted PCB design automation, rigid-flex hybrids, and additive manufacturing techniques are redefining both design methodologies and fabrication workflows. These technologies not only address current limitations but also prepare robotic platforms for next-generation applications, including swarm robotics, bio-inspired systems, and autonomous operations in extreme environments.

Sustainability and circular economy principles are increasingly central to PCB development. As robotics becomes a major consumer of electronic components, the adoption of eco-friendly substrates, modular architectures, and predictive maintenance strategies ensures that technological progress does not come at the expense of environmental stewardship. Circular design strategies—such as copper and laminate recycling, repairable board layouts, and reuse-oriented architectures—support responsible innovation and lifecycle efficiency.

Ultimately, the future of robotics hinges on the synergy between PCB engineering and system-level integration. This convergence is not merely a solution to technical bottlenecks but a forward-looking design philosophy that anticipates scalability, regulatory compliance, and global sustainability targets. By combining cutting-edge PCB technologies with environmentally conscious practices, robotics can extend its impact across precision medicine, autonomous mobility, intelligent manufacturing, and beyond—contributing meaningfully to global priorities in resilience, efficiency, and sustainable development.

Impact Factor: 6.03

ISSN: 2394-3122 (Online)

References

- 1. Shili, M., Hammedi, S., Chaoui, H., & Nouri, K. (2025). A Novel Intelligent Thermal Feedback Framework for Electric Motor Protection in Embedded Robotic Systems. Electronics, 14(18), Article 3598.
- 2. Zhang, Z., Biswal, A. K., Nandi, A., Frost, K., Smith, J. A., Nguyen, B. H., Patel, S., & Vashisth, A. (2023). Recyclable vitrimer-based printed circuit board for circular electronics. arXiv.
- 3. A Green Conformable Thermoformed Printed Circuit Board Sourced from Renewable Materials." ACS Applied Electronic Materials, (2023).
- 4. Fonseca, L. A. L. O., Iano, Y., Oliveira, G. G. d., et al. (2024). Automatic printed circuit board inspection: a comprehensible survey. Discover Artificial Intelligence, 4, Article 10.
- 5. Emerging Recyclable Materials for PCBs." IDTechEx Research Article.
- 6. The Advent of Recyclable Materials for PCBs." Institution of Electronics.
- 7. Oladejo, A. O., Adebayo, M., Olufemi, D., Kamau, E., Bobie-Ansah, D., & Williams, D. (2025). Privacy-Aware AI in cloud-telecom convergence: A federated learning framework for secure data sharing. International Journal of Science and Research Archive, 15(1), 005-022.
- 8. Adebayo, M. Deepfakes and Data Privacy: Navigating The Risks in the Age of AI. NDPC-, 106.
- 9. Sustainability in Electronic Components: Eco-Friendly Materials and Recycling Initiatives." Electronics Journal.
- 10. Ghelani, H. (2024). Advanced AI Technologies for Defect Prevention and Yield Optimization in PCB Manufacturing. International Journal of Engineering and Computer Science, 13(10), 26534-26550.
- 11. Almagharbeh, W. T., Alfanash, H. A., Alnawafleh, K. A., Alasmari, A. A., Alsaraireh, F. A., Dreidi, M. M., & Nashwan, A. J. (2025). Application of artificial intelligence in nursing practice: A qualitative study of Jordanian nurses' perspectives. BMC Nursing, 24, 42. https://doi.org/10.1186/s12912-024-02658-6
- 12. Fonseca, L. A. L. O., Iano, Y., Oliveira, G. G. d., Carnielli, G. P., & Pereira, J. C. (2024). Automatic printed circuit board inspection: a comprehensible survey. Discover Artificial Intelligence, 4, 10.
- 13. Kong, L., et al. (2024). Research on the application of deep learning algorithms to PCB defect detection. Applied and Computational Engineering, Vol. 43
- 14. Impedance Control in HDI and Substrate-Like PCBs for AI Hardware Applications." Journal of Electrical Systems, 20(11s), (2024).
- 15. Almagharbeh, W. T. (2025). The impact of AI-based decision support systems on nursing workflows in critical care units. International Nursing Review, 72(1), e13011. https://doi.org/10.1111/inr.13011
- 16. A Survey of Machine and Deep Learning Techniques in Analog Integrated Circuit Layout Synthesis." Microelectronics An Open-Access Journal for Advancing Microelectronics Technologies, 1(1), (2025).

Sanjeev Mane, Senior Manager in Electrical Engineering department of Brooks Automation. Located in Massachusetts, USA.

ISSN: 2394-3122 (Online) Impact Factor: 6.03 ISSN: 2394-6253 (Print)

:::. Cite this article .:::

Mane, S. (2025). Bridging Electronics and Automation: PCB Design Strategies for Next-Generation Robotics. SK INTERNATIONAL JOURNAL OF MULTIDISCIPLINARY RESEARCH HUB, 12(11), 1–8. https://doi.org/10.61165/sk.publisher.v12i11.1 https://doi.org/10.61165/sk.publisher.v12i11.1